Career
Academy
Teacher
Externship
Program

Career and Technical Education Multi-Unit Plan

Name: Michael P. O'Brien

District: Lena Public
School District, Lena, WI

2017

Overview:

Measurement and common math are required to perform your job duties in nearly every aspect of conveyor manufacturing. I have compiled a list of skills relating to math and measurement that are essential for successful job performance. This include being able to:

- Read a tape measure accurately
- Add or subtract fractions
- Convert fractions to decimal form
- Use a decimal equivalent card or chart (drill gage)

Additional "shop math" lessons based on course the student is taking and their grade level may include:

- Board foot calculation
- Materials cost sheets (wood or metal projects)
- Measuring wood project materials to assure proper fit when assembled
- "Bend allowance" calculations in Metals Fab/Sheetmetal layout
- Measuring and layout exercises for various metal/sheetmetal projects
- Reading a Micromter/digital caliper. (Small engines, Metals 1 \& 2)
- Ohm's Law calculations to find volts, amps, ohms, or watts. (Small engines, Electrathon)
- Measuring engine components for wear. (Small engines)
- Measuring lathe or mill projects. (Metals 1 \& 2, Metals Fab, Electrathon)
- Measuring tubing, bar, or round stock for metals projects. (Metals 1 \& 2, Metals Fab, Electrathon)
- Calculating bend angles for race car fabrication. (Electrathon)
- Calculating cost of producing projects for independent customers. (Materials, welding or fabrication supplies, potential profit/shop donation, etc.)
- Welding-Metals deposit rates

Featured Externship Business:

Nercon Corporation

Subject:

Measurement and Essential Shop Math

Grade Level:

$6^{\text {th }}$ thru $12^{\text {th }}$ grades

Learning objectives:

After doing this activity, students should be able to:

- Read a tape measure accurately
- Add or subtract fractions
- Convert fractions to decimal form
- Use a decimal equivalent card or chart (drill gage)

Workplace Readiness Skill:

Social Skills
Teamwork
\square Attitude and Initiative
X Professionalism

X Communication
X Critical Thinking
X Planning and Organization
\square Media Etiquette

Type of Activity:

Individual
\square Small group
X Whole class

Wisconsin Standards for Technology and Engineering:

Content Area: MNF/Manufacturing:

Standard: MNF1: Students will be able to select and use manufacturing technologies.
MNF1.a: Identify, select and safely use tools, machines, products and systems
for specific tasks.
MNF1.a.2.e: Recognize tools, machines and materials along with their applications and failures.
MNF1.a.3.e: Recognize the characteristics of length, volume, weight, area and time.
MNF1.a.5.m: Use tools, materials and machines safely to diagnose, adjust and repair systems.
MNF1.a.6.m: Explore both customary and metric systems of measurement and conversions.
MNF1.a.9.h: Select and apply the appropriate units and scales for situations involving measurement.

Content Area: AC/Architecture and Construction:

Standard: AC1: Students will be able to select and use architecture and construction technologies.

AC1.b: Apply measurement systems in the planning and layout process used in the residential construction industry.

AC1.b.3.e: Demonstrate scale and proportion (i.e. a toy car is a scale model of a full-sized car).
AC1.b.4.e: Demonstrate use of the Standard Measuring System to the $1 / 4$ " and the Metric Measuring System to centimeters.
AC1.b.5.e: Add, subtract, multiply and divide in the Standard Measuring System to the $1 / 4$ " and the Metric Measuring System to centimeters.
AC1.b.7.m: Calculate the required materials for simple structures.

AC1.b.8.m: Demonstrate basic dimensioning skills including the use of: dimension, extension, center and leader lines.
AC1.b.9.m: Demonstrate use of the Standard Measuring System to the $1 / 16$ " and the Metric Measuring System to millimeters.
AC1.b.10.m: Add, subtract, multiply and divide in the Standard Measuring System to the $1 / 16$ " and the Metric Measuring System to millimeters.
AC1.b.12.h: Calculate required materials for residential construction applications.
AC1.b.13.h: Convert scaled blueprint drawing measurements to full dimensions for a given construction project.
AC1.b.14.h: Apply conventional construction measurement processes accurately (i.e., geometric and trigonometric functions).
AC1.b.15.h: Use conventional construction formulas to determine production requirements.

Time:

Three periods of instruction, demonstration and student worktime. Additional "homework" time may be required by individual students. Additional exercises will be available for those students that need remedial work. These first three lessons are the basic math and measurement lessons, there are a number of additional "shop Math" related lessons depending on the course and grade level.

Materials:

- Tape measure/Ruler
- Starrett Decimal Equivalents Card
- Starrett Metric Equivalents Card
- Worksheet 1
- Worksheet 2
- Ruler reading sheets
- Various size boxes and brackets
- Helpful sites:
- http://www.johnsonlevel.com/News/TapeMeasure
- https://www.youtube.com/watch?v=2IEf92VPyYc
- Helpful reference resources:
- Machinist's Ready Reference. Complied by C. Weingartner. Prakken Publications-Ann Arbor, MIISBN:0-999968-50-8
- www.Starrett.com - educational page has available order forms for a number of different starrett reference cards, etc. Free in limited amounts to educators.

Directions:

1. Students will complete a number of math and measurement lessons as part of a "shop Math" unit. Depending on grade level and the course they are in, there are many skill levels they can attain. The basic lessons all student must complete are:
a. Fractions
b. Decimals
c. Reading a ruler/tape measure
2. After completion of the lecture and demonstrations of how to add and subtract fractions, students will complete Worksheet 2. I give a few examples (more if needed) of adding and subtracting. I also give a reminder of making sure to use common denominators to complete the problems and reduce to their lowest form. Upon completion of Worksheet 2 with 75% or better accuracy, we will move into ruler reading and measurement.
3. Students will watch the Youtube video
(https://www.youtube.com/watch?v=2IEf92VPyYc) on reading a ruler and/or visit the Johnson level website (http://www.johnsonlevel.com/News/TapeMeasure). I draw the divisions of a ruler on the board. I demonstrate how to make inside and outside measurements with a tape measure. The students will then measure a variety of items in the classroom to get some experience making measurements. Examples: Table width, length, and height, door width and height. Students will then complete Worksheet 1 on reading a ruler. This worksheet must be completed with 100% accuracy. They may repeat the worksheet as needed until they attain 100%.
4. The third lesson of this unit is dealing with conversion--fraction to decimal or decimal to fraction. I lecture and give examples on the board of making the conversions. Examples: A blueprint shows me a dimension of $93 / 4$ inches. If I divide the 4 (denominator) into the 3 (numerator) is will end up with the decimal equivalent of .75. Another example dimension of $33 / 8$ inches. I divided the 8 into the 3 with the resulting decimal being .375 . To do the opposite and convert from a decimal to fraction is really quite easy. A . 75 inch can be converted to a fraction by multiplying .75 by the denominator you want in this case 4 . ($75 \times 4=3$) so $3 / 4$ inch. The fraction for .625 inches is $.625 \times 8=5$ or $5 / 8^{\text {th }}$ inch. The Starrett Equivalent Cards are essentially a reference chart you can use to compare fractions to decimals to metric sizes. Very useful and simple to use.

Wrap-up:

I have an oral quiz or review at the end of each lesson. The students read the Starrett Charts and see if they can answer my questions regarding equivalents. I randomly select students to complete the following problems on the board:

- A fraction problem on the board
- Convert a fraction to a decimal
- Convert a decimal to a fraction

I randomly select a few students to use a tape measures to measure items I have on hand.

Extension Activity:

I have a number of additional activities the students complete depending on grade level and the course they are enrolled in. The following are additional "Shop Math" or measuring activities:

- Board foot calculation
- Materials cost sheets (wood or metal projects)
- Measuring wood project materials to assure proper fit when assembled
- "Bend allowance" calculations in Metals Fab/Sheetmetal layout
- Measuring and layout exercises for various metal/sheetmetal projects
- Reading a Micromter/digital caliper. (Small engines, Metals 1 \& 2)
- Ohm's Law calculations to find volts, amps, ohms, or watts. (Small engines, Electrathon)
- Measuring engine components for wear
- Measuring lathe or mill projects
- Measuring tubing, bar, or round stock for metals projects
- Calculating bend angles for race car fabrication
- Calculating cost of producing projects for independent customers. (Materials, welding or fabrication supplies, potential profit/shop donation, etc.)

Career and Technical Education Multi-Unit Plan by Michael P. O'Brien is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Stornehi
 Decimal EQUIVALENTS

INCH/METRIC TAP DRILL SIZES \& DECIMAL EQUIVALENTS

The L.S. Starrett Company - World's Greatest Toolmakers

StorneHi
 Metric EQUVALENTS

DECIMALS TO MILLIMETERS

decimal	мм	decimal	м
. 001	0.03	. 470	11.94
. 002	0.05	. 480	12.19
. 003	0.08	. 490	12.45
. 004	0.10	. 500	12.70
. 005	0.13	. 510	12.95
. 0067	0.15	. 520	13.21
. 0008	0.18 0.20	. 530	13.46
. 009	0.23	. 550	13.92
. 010	0.25	. 560	14.22
. 020	0.51	. 570	14.48
. 030	0.76	. 580	14.73
. 040	1.02	. 590	14.99
. 050	1.27	. 600	15.24
. 070	1.78	. 610	15.49
. 080	2.03	. 620	15.75
. 090	2.29	. 640	16.26
. 1100	2.54	. 650	16.51
. 110	2.79	. 660	16.76
. 120	3.05	. 670	17.02
. 130	3.30	. 680	17.27
. 140	3.56	. 690	17.53
. 160	4.06	. 700	17.78
. 170	4.32	. 710	18.03
. 180	4.57	. 720	18.29
. 190	4.83	. 730	18.54
. 200	5.08	. 740	18.80
. 210	5.33 5.59	.760	19.30
. 230	5.84	. 770	19.56
. 240	6.10	. 780	19.81
. 250	6.35	. 790	20.07
. 260	6.60	. 800	20.32
. 270	6.86	. 810	20.57
. 280	7.11	. 8230	21.08
. 290	7.37	. 840	21.08
. 300	7.62	. 850	21.59
. 310	7.87	. 860	21.84
. 330	8.38	. 870	22.10
. 340	8.64	. 880	22.35
. 350	8.89	. 890	22.61
. 360	9.14	. 900	22.86
. 370	9.40	. 910	23.11
. 390	9.65	. 930	23.62
. 400	10.16	. 940	23.88
. 410	10.41	. 950	24.13
.420	10.67	. 960	24.38
. 430	10.92	. 970	24.64
. 440	11.18	. 9890	25.15
. 460	11.43	. 990	25.15

FRACTIONS TO DECIMALS TO MILLIMETERS

| FRACTION | DECIMAL | MM | FRACTION | DECIMAL | MM |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $1 / 64$ | .0156 | 0.40 | $33 / 64$ | .5156 | 13.10 |
| $1 / 32$ | .0313 | 0.79 | $17 / 32$ | .5313 | 13.49 |
| $3 / 64$ | .0469 | 1.19 | $35 / 64$ | .5469 | 13.89 |
| $1 / 16$ | .0625 | 1.59 | $9 / 16$ | .5625 | 14.29 |
| $5 / 64$ | .0781 | 1.98 | $37 / 64$ | .5781 | 14.68 |
| $3 / 32$ | .0938 | 2.38 | $19 / 32$ | .5938 | 15.08 |
| $7 / 64$ | .1094 | 2.78 | $39 / 64$ | .6094 | 15.48 |
| $1 / 8$ | .1250 | 3.18 | $5 / 8$ | .6250 | 15.88 |
| | | | | | |
| $9 / 64$ | .1406 | 3.57 | $41 / 64$ | .6406 | 16.27 |
| $5 / 32$ | .1563 | 3.97 | $21 / 32$ | .6563 | 16.67 |
| $11 / 64$ | .1719 | 4.37 | $43 / 64$ | .6719 | 17.07 |
| $3 / 16$ | .1875 | 4.76 | $11 / 16$ | .6875 | 17.46 |
| $13 / 64$ | .2031 | 5.16 | $45 / 64$ | .7031 | 17.86 |
| $7 / 32$ | .2188 | 5.56 | $23 / 32$ | .7188 | 18.26 |
| $15 / 64$ | .2344 | 5.95 | $47 / 64$ | .7344 | 18.65 |
| $1 / 4$ | .2500 | 6.35 | $3 / 4$ | .7500 | 19.05 |
| $17 / 64$ | .2656 | 6.75 | $49 / 64$ | .7656 | 19.45 |
| $9 / 32$ | .2813 | 7.14 | $25 / 32$ | .7813 | 19.84 |
| $19 / 64$ | .2969 | 7.54 | $51 / 64$ | .7969 | 20.24 |
| $5 / 16$ | .3125 | 7.94 | $13 / 16$ | .8125 | 20.64 |
| $21 / 64$ | .3281 | 8.33 | $53 / 64$ | .8281 | 21.03 |
| $11 / 32$ | .3438 | 8.78 | $27 / 32$ | .8438 | 21.43 |
| $23 / 64$ | .3594 | 9.13 | $55 / 64$ | .8594 | 21.83 |
| $3 / 8$ | .3750 | 9.53 | $7 / 8$ | .8750 | 22.23 |
| $25 / 64$ | .3906 | 9.92 | $57 / 64$ | .8906 | 22.62 |
| $13 / 32$ | .4062 | 10.32 | $29 / 32$ | .9063 | 23.02 |
| $27 / 64$ | .4219 | 10.72 | $59 / 64$ | .9219 | 23.42 |
| $7 / 16$ | .4375 | 11.11 | $15 / 16$ | .9375 | 23.81 |
| $29 / 64$ | .4531 | 11.51 | $61 / 64$ | .9531 | 24.21 |
| $15 / 32$ | .4688 | 11.91 | $31 / 32$ | .9688 | 24.61 |
| $31 / 64$ | .4844 | 12.30 | $63 / 64$ | .9844 | 25.00 |
| $1 / 2$ | .5000 | 12.70 | 1 | 1.0000 | 25.40 |
| | | | | | |

(2)
 Metric EqUIVALENTS

MILLIMETERS TO DECIMALS

мM	AL	мм	MAL	MM	DECIMAL	MM	AL	MM	DECIMAL
0.01	. 0004	0.41	. 0161	0.81	. 0319	21	. 8268	61	2.4016
0.02	. 0008	0.42	. 0165	0.82	. 0323	22	. 8661	62	2.4409
0.03	. 0012	0.43	. 0169	0.83	. 0327	23	. 9055	63	2.4803
0.04	. 0016	0.44	. 0173	0.84	. 0331	24	. 9449	64	2.5197
0.05	. 0020	0.45	. 0177	0.85	. 0335	25	. 9843	65	2.5591
0.06	. 0024	0.46	. 0181	0.86	. 0339	26	1.0236	66	2.5984
0.07	. 0028	0.47	. 0185	0.87	. 0343	27	1.0630	67	2.6378
0.08	. 0032	0.48	. 0189	0.88	. 0347	28	1.1024	68	2.6772
0.09	. 0035	0.49	. 0193	0.89	. 0350	29	1.1417	69	2.7165
0.10	. 0039	0.50	. 0197	0.90	. 0354	30	1.1811	70	2.7559
0.11	. 0043	0.51	. 0201	0.91	. 0358	31	1.2205	71	2.7953
0.12	. 0047	0.52	. 0205	0.92	. 0362	32	1.2598	72	2.8346
0.13	. 0051	0.53	. 0209	0.93	. 0366	33	1.2992	73	2.8740
0.14	. 0055	0.54	. 0213	0.94	. 0370	34	1.3386	74	2.9134
0.15	. 0059	0.55	. 0217	0.95	. 0374	35	1.3780	75	2.9528
0.16	. 0063	0.56	. 0221	0.96	. 0378	36	1.4173	76	2.9921
0.17	. 0067	0.57	. 0224	0.97	. 0382	37	1.4567	77	3.0315
0.18	. 0071	0.58	. 0228	0.98	. 0386	38	1.4961	78	3.0709
0.19	. 0075	0.59	. 0232	0.99	. 0390	39	1.5354	79	3.1102
0.20	. 0079	0.60	. 0236	1.00	. 0394	40	1.5748	80	3.1496
0.21	. 0083	0.61	. 0240	1	. 0394	41	1.6142	81	3.1890
0.22	. 0087	0.62	. 0244	2	. 0787	42	1.6535	82	3.2283
0.23	. 0091	0.63	. 0248	3	. 1181	43	1.6929	83	3.2677
0.24	. 0095	0.64	. 0252	4	. 1575	44	1.7323	84	3.3071
0.25	. 0098	0.65	. 0256	5	. 1969	45	1.7717	85	3.3465
0.26	. 0102	0.66	. 0260	6	. 2362	46	1.8110	86	3.3858
0.27	. 0106	0.67	. 0264	7	. 2756	47	1.8504	87	3.4252
0.28	. 0110	0.68	. 0268	8	. 3150	48	1.8898	88	3.4646
0.29	. 0114	0.69	. 0272	9	. 3543	49	1.9291	89	3.5039
0.30	. 0118	0.70	. 0276	10	. 3937	50	1.9685	90	3.5433
0.31	. 0122	0.71	. 0280	11	. 4331	51	2.0079	91	3.5827
0.32	. 0126	0.72	. 0284	12	. 4724	52	2.0472	92	3.6220
0.33	. 0130	0.73	. 0287	13	. 5118	53	2.0866	93	3.6614
0.34	. 0134	0.74	. 0291	14	. 5512	54	2.1260	94	3.7008
0.35	. 0138	0.75	. 0295	15	. 5906	55	2.1654	95	3.7402
0.36	. 0142	0.76	. 0299	16	. 6299	56	2.2047	96	3.7795
0.37	. 0146	0.77	. 0303	17	. 6693	57	2.2441	97	3.8189
0.38	. 0150	0.78	. 0307	18	. 7087	58	2.2835	98	3.8583
0.39	. 0154	0.79	. 0311	19	. 7480	59	2.3228	99	3.8976
0.40	. 0158	0.80	. 0315	20	. 7874	60	2.3622	100	3.9370

The L.S. Starrett Company - World's Greatest Toolmakers

Name: \qquad
Measurement Test

Name: \qquad Date: \qquad

Write the correct measurement indicated by the arrows on the lines to the ieft. (Reduce, | 1 |
| :--- |
| 2 |
| 3 |
| 4 |
| 5 |
| 6 |
| $7 \square$ |
| 8 |
| 9 |
| 10 |
| 11 |
| 12 |
| 13 |
| 14 |
| 15 |
| 16 |

 $17 \square$
$18 \square$
$19 \square$
$20 \square$
$21 \square$
$22 \square$
$23 \square$
$24 \square$
$25 \square$
26
$27 \square$
28
29
30
31
32
33

Worksheet 2

\qquad Hr. \qquad Qtr/Sem. Name: \qquad

Directions: Solve the equations below in the space provided. SHOW YOUR WORK (1 pt each)

1. $1 / 2^{\prime \prime}+1$ " $=$
2. $1 / 2^{\prime \prime}+3 / 4$ " $=$
3. $3 / 8^{\prime \prime}+7 / 8^{\prime \prime}=$
4. $5 / 16^{\prime \prime}+7 / 16^{\prime \prime}=$
5. $3 / 16^{\prime \prime}+3 / 4^{\prime \prime}=$
6. $1 / 2^{\prime \prime}+11 / 16^{\prime \prime}=$
7. $111 / 2^{\prime \prime}+31 / 2^{\prime \prime}=$
8. $53 / 8^{\prime \prime}+87 / 8^{\prime \prime}=$
9. $103 / 16+61 / 4$ " $=$
10. $73 / 8^{\prime \prime}+59 / 16^{\prime \prime}=$
11. $1 "-1 / 2 "=$
12. $3 / 4$ " $-1 / 2^{\prime \prime}=$
13. $7 / 8^{\prime \prime}-3 / 8^{\prime \prime}=$
14. $7 / 16$ " $-5 / 16$ " $=$
15. 3/4"- 3/16"=
16. $3 / 4$ "-11/16" $=$
17. 11 1/2"- 3 1/2"=
18. $87 / 8 "-53 / 8^{\prime \prime}$
19. $103 / 16$ " $-61 / 4$ " $=$
20. 7 3/8"-5 9/16"=

MEASURING WITH A RULE/TAPE MEASURE

Write down the measurements for the location at each letter.

1. $A=$ \qquad 6. $F=$ \qquad 11. $\mathrm{K}=$ \qquad
2. $B=$ \qquad 7. $G=$ \qquad 12. $\mathrm{L}=$ \qquad
3. $\mathrm{C}=$ \qquad 8. $\mathrm{H}=$ \qquad 13. $\mathrm{M}=$ \qquad
4. $D=$ \qquad 9. I= \qquad 14. $\mathrm{N}=$ \qquad
5. $\mathrm{E}=$ \qquad 10. $\mathrm{J}=$ \qquad 15. $\mathrm{O}=$ \qquad

Measure lines 16 through 20 to the nearest $1 / 16^{\text {th }}$ and record the results.
16. \qquad $16=$ \qquad
17. \qquad $17=$ \qquad
18. \qquad $18=$ \qquad
19. \qquad $19=$ \qquad
20. \qquad
\qquad

Additional Extension Activity Formulas/Worksheets

Board Feet

A board foot is defined as the equivalent of a piece of wood measuring one foot wide, one foot long and one inch thick. In each of the sketches, the number of board feet is shown.

To calculate the board measure in any quantity or piece of lumber, use the formula

Board feet $=$ T x W x L

in which $T=$ thickness (expressed in inches), $\mathrm{W}=$ width (expressed in feet), and $\mathrm{L}=$ length (expressed in feet).

Example: To find the number of board feet in the piece of lumber
shown, use $T=1 \mathrm{inch}^{*}, \mathrm{~W}=6 / 12$ foot, and $\mathrm{L}=4$ feet.
Board feet $=T \times W \times L=1 \times 6 / 12 \times 4=2$ bd. ft .

*round to the next half unit higher

Notice thickness is always in inches and width and length are in feet.

Find the number of board feet in each of the following quantities:

1. 5 pieces of $\mathbf{1}^{\prime \prime} \times \mathbf{6}^{\prime \prime} \times \mathbf{1 8}^{\prime}$
2. 34 pieces of $\mathbf{2 "}^{\prime \prime} \times \mathbf{4}^{\prime \prime} \times \mathbf{1 6}^{\prime}$
3. 62 pieces of $\mathbf{1 "}^{\prime \prime} \times \mathbf{1 0}^{\prime \prime} \times \mathbf{1 8}^{\prime}$
4. 18 pieces of $1 / 2 " \times 4 " \times 16$ '
5. 8 boards, $\mathbf{1} / \mathbf{2}$ " thick, 22 " wide, $\mathbf{1 6}^{\prime}$ long
6. 25 pieces, $3 / 4$ " $\times 3$ " $\times 12$ '

Various forumlas used in "Shop".

Circles

$\Pi=3.141592654$
Radius $=1 / 2$ Diameter
Circumference $=\pi D$

Diameter=width of a circle measured thru the center
Circumference $=$ Distance around a circle
Diameter = C/п

Area of a circle

$$
\mathrm{A}=\pi \mathrm{r}^{2}
$$

Volume of a cylinder
$\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{x}$ length

Rectangles

$A=L \times W$
$V=L \times W \times H$

Triangles

$A=1 / 2 \times B \times H$
Pythagorean's Theorem

$$
\mathrm{A}^{2}+\mathrm{B}^{2}=\mathrm{C}^{2}
$$

Trigonometry
Sine=Opposite/Hypotenuse
Cosine= Adjacent/Hypotenuse
Tangent=Opposite/Adjacent

Weight of Steels

Aluminum $=0.098$ Lbs/in^3 (6000 series)
Stainless Steel (300 series) $=0.283 \mathrm{Lbs} / \mathrm{in}^{\wedge} 3$
Carbon Steel $=0.283 \mathrm{Lbs} / \mathrm{in}^{\wedge} 3$
Conversion 1" $=25.4 \mathrm{~mm}$

Angle	Sin	Cos	Tan	Angle	Sin	Cos	Tan
1	0.017	1.000	0.017	46	0.719	0.695	1.036
2	0.035	0.999	0.035	47	0.731	0.682	1.072
3	0.052	0.999	0.052	48	0.743	0.669	1.111
4	0.070	0.998	0.070	49	0.755	0.656	1.150
5	0.087	0.996	0.087	50	0.766	0.643	1.192
6	0.105	0.995	0.105	51	0.777	0.629	1.235
7	0.122	0.993	0.123	52	0.788	0.616	1.280
8	0.139	0.990	0.141	53	0.799	0.602	1.327
9	0.156	0.988	0.158	54	0.809	0.588	1.376
10	0.174	0.985	0.176	55	0.819	0.574	1.428
11	0.191	0.982	0.194	56	0.829	0.559	1.483
12	0.208	0.978	0.213	57	0.839	0.545	1.540
13	0.225	0.974	0.231	58	0.848	0.530	1.600
14	0.242	0.970	0.249	59	0.857	0.515	1.664
15	0.259	0.966	0.268	60	0.866	0.500	1.732
16	0.276	0.961	0.287	61	0.875	0.485	1.804
17	0.292	0.956	0.306	62	0.883	0.469	1.881
18	0.309	0.951	0.325	63	0.891	0.454	1.963
19	0.326	0.946	0.344	64	0.899	0.438	2.050
20	0.342	0.940	0.364	65	0.906	0.423	2.145
21	0.358	0.934	0.384	66	0.914	0.407	2.246
22	0.375	0.927	0.404	67	0.921	0.391	2.356
23	0.391	0.921	0.424	68	0.927	0.375	2.475
24	0.407	0.914	0.445	69	0.934	0.358	2.605
25	0.423	0.906	0.466	70	0.940	0.342	2.747
26	0.438	0.899	0.488	71	0.946	0.326	2.904
27	0.454	0.891	0.510	72	0.951	0.309	3.078
28	0.469	0.883	0.532	73	0.956	0.292	3.271
29	0.485	0.875	0.554	74	0.961	0.276	3.487
30	0.500	0.866	0.577	75	0.966	0.259	3.732
31	0.515	0.857	0.601	76	0.970	0.242	4.011
32	0.530	0.848	0.625	77	0.974	0.225	4.331
33	0.545	0.839	0.649	78	0.978	0.208	4.705
34	0.559	0.829	0.675	79	0.982	0.191	5.145
35	0.574	0.819	0.700	80	0.985	0.174	5.671
36	0.588	0.809	0.727	81	0.988	0.156	6.314
37	0.602	0.799	0.754	82	0.990	0.139	7.115
38	0.616	0.788	0.781	83	0.993	0.122	8.144
39	0.629	0.777	0.810	84	0.995	0.105	9.514
40	0.643	0.766	0.839	85	0.996	0.087	11.430
41	0.656	0.755	0.869	86	0.998	0.070	14.301
42	0.669	0.743	0.900	87	0.999	0.052	19.081
43	0.682	0.731	0.933	88	0.999	0.035	28.636
44	0.695	0.719	0.966	89	1.000	0.017	57.290
45	0.707	0.707	1.000	90	1.000	0.000	

Sine $=\mathrm{O} / \mathrm{H}$
Cosine $=\mathrm{A} / \mathrm{H}$
Tangent= O/A

Multiplier x Diameter of Hole Circle= Chord Length
Example: If you were to lay out holes for a clock (12 holes or divisions) on a 12" circle with the holes set in $1 / 2^{\prime \prime}$. We would have an $11^{\prime \prime}$ layout diameter. The multiplier for 12 divisions $=0.25882$ $0.25882 \times 11=2.847^{\prime \prime}$ between hole centers

VOLUME - SOLID FIGURES

DECIMAL EQUIVALENTS OF AN INCH

Fraction	Decimal	Fraction	Decimal	Fraction	Decimal	Fraction	Decimal
$1 / 64$	0.015625	$17 / 64$	0.265625	$33 / 64$	0.515625	$49 / 64$	0.765625
$1 / 32$	0.03125	$9 / 32$	0.28125	$17 / 32$	0.53125	$25 / 32$	0.78125
$3 / 64$	0.046875	$19 / 64$	0.296875	$35 / 64$	0.546875	$51 / 64$	0.796875
$1 / 16$	0.0625	$5 / 16$	0.3125	$9 / 16$	0.5625	$13 / 16$	0.8125
$5 / 64$	0.078125	$21 / 64$	0.328125	$37 / 64$	0.578125	$53 / 64$	0.828125
$3 / 32$	0.09375	$11 / 32$	0.34375	$19 / 32$	0.59375	$27 / 32$	0.84375
$7 / 64$	0.109375	$23 / 64$	0.359375	$39 / 64$	0.609375	$55 / 64$	0.859375
$1 / 8$	0.125	$3 / 8$	0.375	$5 / 8$	0.625	$7 / 8$	0.875
$9 / 64$	0.140625	$25 / 64$	0.390625	$41 / 64$	0.640625	$57 / 64$	0.890625
$5 / 32$	0.15625	$13 / 32$	0.40625	$21 / 32$	0.65625	$29 / 32$	0.90625
$11 / 64$	0.171875	$27 / 64$	0.421875	$43 / 64$	0.671875	$59 / 64$	0.921875
$3 / 16$	0.1875	$7 / 16$	0.4375	$11 / 16$	0.6875	$15 / 16$	0.9375
$13 / 64$	0.203125	$29 / 64$	0.453125	$45 / 64$	0.703125	$61 / 64$	0.953125
$7 / 32$	0.21875	$15 / 32$	0.46875	$23 / 32$	0.71875	$31 / 32$	0.96875
$15 / 64$	0.234375	$31 / 64$	0.484375	$47 / 64$	0.734375	$63 / 64$	0.984375
$1 / 4$	0.250	$11 / 2$	0.500	$3 / 4$	0.750	1	1.000

1. Find the area of the wood by multiplying width x length.

Note: You should round all fractional numbers up to the next whole number
Example:
W = 6"
L = 12"
Area $=W \times L$
Area $=6$ " $\times 12^{\prime \prime}$
Area $=72$ square inches (sq. in.)
2. Convert that number into Board Feet (BF):

Formula:
$B F=$ sq. in./144
$B F=72 / 144$
$B F=.5$
3. Determine the cost of the piece of wood. Different species of wood have different costs. For this example, let's say we are using a wood that costs $\$ 6.00$ per board foot.
Therefore the cost of this piece of wood would be:
Cost $=$ price per $B F \times$ number of $B F$
Cost $=\$ 6.00 \times .5$
Cost $=\$ 3.00$

So in this example, the first piece of wood would cost $\$ 3.00$. You must repeat this step for each piece of wood, and add up the total to determine the cost of all the wood for your project.

Remember, for the projects that you are required to make in this class, the wood is provided for you, but if you make a mistake and ruin a piece of wood, you must pay for the piece to replace it!

Additional measuring reference material provided by Mr. Eric Strom. I give a copy of these worksheets to students that need additional review or remedial work. Something they can take with them and use as a study guide for measuring. Eric's work can be found on the Woodshop Teachers.org website: https://sites.google.com/a/woodshopteachers.org/www/lessonresources

Exploring Woodworking and Construction Technology

```
        Course Syllabus
        Fall semester 2009
        Room T-3
Teacher: Mr. Storm (503) 386-1167 ex 116
    eric_storm@reynolds.k12.ory
```


Measuring

History:

When woodworking, we do not use the Metric system, but instead use the Standard, or English system of measurement, meaning we measure in feet and inches, not in centimeters.

In the Standard system of measurement, inches are broken down in to fractions. In this class, we will use rulers which have each inch broken into 16 sections. Each of these sections is $1 / 16$ of an inch.

On this ruler, notice that each inch is broken into 16 parts. Also notice that only the inches are numbered. The lines that divide each inch are different lengths, but they are not numbered. If every line were numbered, the ruler would have way too many numbers on it, and would just get confusing.

People often ask why inches are broken into 16 sections, and not 10 or 14 or 19 or anything else. An inch is broken into 16 sections because that is what we end up with if we keep taking half of something.

Before accurate ways to measure and weigh things existed, this was a simple way to divide things into equal portions quite accurately.

Example:

Let's say you had a bucket of rice to sell at a market. If someone came up to you and said, "I would like to purchase $1 / 10$ of that rice, it would have been very difficult to measure out exactly that amount of rice without precise measuring devices.

But if you had a simple balancing scale, you could very accurately divide the rice in half. You could then divide each half in half, ending up with $1 / 4$ of a bucket. You could then easily divide each $1 / 4$ in half to get exactly $1 / 8$ of a bucket of rice. By doing this, you could assure the person who was buying your rice that they were getting precisely $1 / 8$ a bucket of rice.

Another way to explain this is to talk about how pizzas are cut up, as shown in the following example.

How we measure, and how we write measurements:

Here is a ruler which is $6^{\prime \prime}$ long.
-Each inch is divided into 16 parts

Here is an enlarged picture of the first inch on a ruler.
-Each $1 / 16^{\prime \prime}$ mark is labeled.
-All fractions are reduced.
If you count over from the beginning of the ruler 5 spaces, you will see that mark labeled as $5 / 16$ ". The next mark is not labeled as $6 / 16^{6}$, but is instead reduced down to $3 / \mathrm{g}^{\prime \prime}$.

Use this page as a reference for the exercises on the following pages.

Exploring Woodworking and Construction Technology
$\substack{\text { Comere sllatu } \\ \text { sund } \\ \text { nomisis }}$
Teacker:
Mr Stoman (503) 36-1.167 ex 110

Notice how the 5 different measurements shown on this ruler are written:
-The first one, $5 / \mathbf{e}^{\prime \prime}$, is 10 spaces over from the beginning of the ruler. It could be written as ${ }^{10} / 16^{\prime \prime}$, but we reduce that fraction to $5 / \mathrm{m}^{\prime \prime}$.
-The next one, $11 / 2^{\prime \prime}$, is 8 spaces past the $1^{\prime \prime}$ mark. It could be written as $1^{8 / 16^{\prime \prime}}$, but we reduce it to $11 / 2^{\prime \prime}$.

All of these measurements are written in the correct way. Use this page as a reference for the following worksheets.

Exercise 1

Correctly write the measurements for the following 9 locations.

\qquad
1.
2. \qquad
3. \qquad
4. \qquad 5. \qquad
\qquad 7. \qquad 8 \qquad 9. \qquad

```
Exploring Woodworking and Construction Technology
Course Syllatus
\begin{tabular}{c} 
Fall senesere 2009 \\
Room T-3 \\
\hline
\end{tabular}
```


Exercise 2

On this ruler, make and label an arrow for each of the following measurements.

$3 / 3^{\prime \prime}$	$3 / 4{ }^{\prime \prime}$	$1 \frac{1 / s^{\prime \prime}}{}$	$19 / 16^{\prime \prime}$	$2^{5 / 8^{\prime \prime}}$
$3^{3 / 4} 4^{\prime \prime}$	$4^{1 / 16 " ~}$	$4^{13 / 16^{\prime \prime}}$	$5^{5 / 16^{\prime \prime}}$	$6^{\prime \prime}$

Exercise 3

On this ruler, make and label an arrow for each of the following measurements.

$5 / 3^{\prime \prime}$	7/8	$1^{1 / 4}{ }^{\prime \prime}$	$1^{11 / 16 "}$	$2^{7 / 88}$
$3^{13} / 16^{11}$	$4^{T / 1616}$	$4{ }^{15} / 16^{\prime \prime}$	$5^{1 / 2}{ }^{\prime \prime}$	$5^{3 / 4}$

[^0]
[^0]: Exploring Woodworking and Construction lechnologV

 tramer
 Mr sume son sativa ulve

