

Career and Technical Education Multi-Unit Plan

Name: Michael P. O'Brien

District: Lena Public School District, Lena, WI

2017

Overview:

Measurement and common math are required to perform your job duties in nearly every aspect of conveyor manufacturing. I have compiled a list of skills relating to math and measurement that are essential for successful job performance. This include being able to:

- Read a tape measure accurately
- Add or subtract fractions
- Convert fractions to decimal form
- Use a decimal equivalent card or chart (drill gage)

Additional "shop math" lessons based on course the student is taking and their grade level may include:

- Board foot calculation
- Materials cost sheets (wood or metal projects)
- Measuring wood project materials to assure proper fit when assembled
- "Bend allowance" calculations in Metals Fab/Sheetmetal layout
- Measuring and layout exercises for various metal/sheetmetal projects
- Reading a Micromter/digital caliper. (Small engines, Metals 1 & 2)
- Ohm's Law calculations to find volts, amps, ohms, or watts. (Small engines, Electrathon)
- Measuring engine components for wear. (Small engines)
- Measuring lathe or mill projects. (Metals 1 & 2, Metals Fab, Electrathon)
- Measuring tubing, bar, or round stock for metals projects. (Metals 1 & 2, Metals Fab, Electrathon)
- Calculating bend angles for race car fabrication. (Electrathon)
- Calculating cost of producing projects for independent customers. (Materials, welding or fabrication supplies, potential profit/shop donation, etc.)
- Welding-Metals deposit rates

Featured Externship Business:

Nercon Corporation

Subject:

Measurement and Essential Shop Math

Grade Level:

6th thru 12th grades

Learning objectives:

After doing this activity, students should be able to:

- Read a tape measure accurately
- Add or subtract fractions
- Convert fractions to decimal form
- Use a decimal equivalent card or chart (drill gage)

Workplace Readiness Skill:

Social Skills
 Teamwork
 Attitude and Initiative
 X Professionalism

X Communication X Critical Thinking X Planning and Organization □ Media Etiquette

Type of Activity:

- Individual
 Small group
- X Whole class

Wisconsin Standards for Technology and Engineering:

Content Area: MNF/Manufacturing:

Standard: MNF1: Students will be able to select and use manufacturing technologies. MNF1.a: Identify, select and safely use tools, machines, products and systems

for specific tasks.

MNF1.a.2.e: Recognize tools, machines and materials along with their applications and failures.

MNF1.a.3.e: Recognize the characteristics of length, volume, weight, area and time.

MNF1.a.5.m: Use tools, materials and machines safely to diagnose, adjust and repair systems.

MNF1.a.6.m: Explore both customary and metric systems of measurement and conversions.

MNF1.a.9.h: Select and apply the appropriate units and scales for situations involving measurement.

Content Area: AC/Architecture and Construction:

Standard: AC1: Students will be able to select and use architecture and construction technologies.

AC1.b: Apply measurement systems in the planning and layout process used in the residential construction industry.

AC1.b.3.e: Demonstrate scale and proportion (i.e. a toy car is a scale model of a full-sized car).

AC1.b.4.e: Demonstrate use of the Standard Measuring System to the 1/4" and the Metric Measuring System to centimeters.

AC1.b.5.e: Add, subtract, multiply and divide in the Standard Measuring System to the 1/4" and the Metric Measuring System to centimeters. **AC1.b.7.m:** Calculate the required materials for simple structures.

AC1.b.8.m: Demonstrate basic dimensioning skills including the use of: dimension, extension, center and leader lines.

AC1.b.9.m: Demonstrate use of the Standard Measuring System to the 1/16" and the Metric Measuring System to millimeters.

AC1.b.10.m: Add, subtract, multiply and divide in the Standard Measuring System to the 1/16" and the Metric Measuring System to millimeters. **AC1.b.12.h:** Calculate required materials for residential construction applications.

AC1.b.13.h: Convert scaled blueprint drawing measurements to full dimensions for a given construction project.

AC1.b.14.h: Apply conventional construction measurement processes accurately (i.e., geometric and trigonometric functions).

AC1.b.15.h: Use conventional construction formulas to determine production requirements.

Time:

Three periods of instruction, demonstration and student worktime. Additional "homework" time may be required by individual students. Additional exercises will be available for those students that need remedial work. These first three lessons are the basic math and measurement lessons, there are a number of additional "shop Math" related lessons depending on the course and grade level.

Materials:

- Tape measure/Ruler
- Starrett Decimal Equivalents Card
- Starrett Metric Equivalents Card
- Worksheet 1
- Worksheet 2
- Ruler reading sheets
- Various size boxes and brackets
- Helpful sites:
 - <u>http://www.johnsonlevel.com/News/TapeMeasure</u>
 - https://www.youtube.com/watch?v=2IEf92VPyYc
- Helpful reference resources:
 - Machinist's Ready Reference. Complied by C. Weingartner. Prakken Publications-Ann Arbor, MIISBN:0-999968-50-8
 - <u>www.Starrett.com</u> educational page has available order forms for a number of different starrett reference cards, etc. <u>Free in limited amounts</u> <u>to educators.</u>

Directions:

- 1. Students will complete a number of math and measurement lessons as part of a "shop Math" unit. Depending on grade level and the course they are in, there are many skill levels they can attain. The basic lessons all student must complete are:
 - a. Fractions
 - b. Decimals
 - c. Reading a ruler/tape measure

- 2. After completion of the lecture and demonstrations of how to add and subtract fractions, students will complete Worksheet 2. I give a few examples (more if needed) of adding and subtracting. I also give a reminder of making sure to use common denominators to complete the problems and reduce to their lowest form. Upon completion of Worksheet 2 with 75% or better accuracy, we will move into ruler reading and measurement.
- 3. Students will watch the Youtube video (https://www.youtube.com/watch?v=2lEf92VPyYc) on reading a ruler and/or visit the Johnson level website (http://www.johnsonlevel.com/News/TapeMeasure). I draw the divisions of a ruler on the board. I demonstrate how to make inside and outside measurements with a tape measure. The students will then measure a variety of items in the classroom to get some experience making measurements. Examples: Table width, length, and height, door width and height. Students will then complete Worksheet 1 on reading a ruler. This worksheet must be completed with 100% accuracy. They may repeat the worksheet as needed until they attain 100%.
- 4. The third lesson of this unit is dealing with conversion--fraction to decimal or decimal to fraction. I lecture and give examples on the board of making the conversions. Examples: A blueprint shows me a dimension of 9 $\frac{3}{4}$ inches. If I divide the 4 (denominator) into the 3 (numerator) is will end up with the decimal equivalent of .75. Another example dimension of 3 $\frac{3}{8}$ inches. I divided the 8 into the 3 with the resulting decimal being .375. To do the opposite and convert from a decimal to fraction is really quite easy. A .75 inch can be converted to a fraction by multiplying .75 by the denominator you want in this case 4. (.75 x 4 = 3) so $\frac{3}{4}$ inch. The fraction for .625 inches is .625 x 8= 5 or $\frac{5}{8}$ th inch. The Starrett Equivalent Cards are essentially a reference chart you can use to compare fractions to decimals to metric sizes. Very useful and simple to use.

Wrap-up:

I have an oral quiz or review at the end of each lesson. The students read the Starrett Charts and see if they can answer my questions regarding equivalents. I randomly select students to complete the following problems on the board:

- A fraction problem on the board
- Convert a fraction to a decimal
- Convert a decimal to a fraction

I randomly select a few students to use a tape measures to measure items I have on hand.

Extension Activity:

I have a number of additional activities the students complete depending on grade level and the course they are enrolled in. The following are additional "Shop Math" or measuring activities:

• Board foot calculation

- Materials cost sheets (wood or metal projects)
- Measuring wood project materials to assure proper fit when assembled
- "Bend allowance" calculations in Metals Fab/Sheetmetal layout
- Measuring and layout exercises for various metal/sheetmetal projects
- Reading a Micromter/digital caliper. (Small engines, Metals 1 & 2)
- Ohm's Law calculations to find volts, amps, ohms, or watts. (Small engines, Electrathon)
- Measuring engine components for wear
- Measuring lathe or mill projects
- Measuring tubing, bar, or round stock for metals projects
- Calculating bend angles for race car fabrication
- Calculating cost of producing projects for independent customers. (Materials, welding or fabrication supplies, potential profit/shop donation, etc.)

Career and Technical Education Multi-Unit Plan by Michael P. O'Brien is licensed under a <u>Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</u>.

Storrett DECIM							
INCH/METRI	C TAP	DRILL S	IZES	& DECI	MAL EQ	UIVALENTS	
DRILL SIZE DECIMAL EQUIV.	TAP SIZE	DRILL SIZE	DECIMAL EQUIV.	TAP SIZE	DRILL SIZE	DECIMAL EQUIV. TAP SIZE	
80 .0135 1 79 .0145 64 78 .0160 78 .0160		7 7 64 35	.1040 .1065 .1094 .1100	5 - 44 6 - 32	1 D 4 E 17 G	.2460 .2500 .2570 ⁵ /16 - 18 .2610	
77 .0180 76 .0200 75 .0210 74 .0225 73 .0240		34 33 32 <u>1</u> 31	.1110 .1130 .1160 .1200	6 - 40	64 H I J	.2656 .2660 .2720 ⁵ /16 - 24 .2770 .2810	
72 .0250 71 .0260 70 .0280 69 .0292		⁸ 30 29 28 <u>9</u> 28 64 27	.1285 .1360 .1405 .1406	8 - 32, 36	³² L 19 M 64 N	.2812 .2900 .2950 .2969	
1 .0310 .0312 .0312 67 .0320 66 .0330 65 .0350		26 25 24 5 23	.1440 .1470 .1495 .1520 .1540	10 - 24	5 № 16 0 21 P	.3020 .3125 .3160 .3230 .3281	
64 .0360 63 .0370 62 .0380 61 .0390 60 .0400		32 21 20 19	.1562 .1570 .1590 .1610 .1660	10 - 32	11 R 32 S 22 T	.3320 ³ /8 - 24 .3390 .3438 .3480 .3580	
59 .0410 58 .0420 57 .0430 3 56 .0465 0469	0 - 80	11 18 64 17 16 15	.1695 .1719 .1730 .1770 1800	12 - 24	64 3 U 8 V	.3594 .3680 ⁷ /16 - 14 .3750 .3770 .3860	
64 55 .0520 54 .0550 <u>1 53</u> .0595 .0625	1 -64, 72	14 3 13 16 12	.1820 .1850 .1875 .1890	12 - 28	25 · · · · · · · · · · · · · · · · · · ·	.3906 ⁷ /16 - 20 .3970 .4040 .4062	
52 .0635 51 .0670 50 .0700 49 .0730 5 48 .0760	2 -56, 64	11 10 9 8 7	.1910 .1935 .1960 .1990 .2010	¹ /4 - 20	27 Z 64 7 29 16 64	.4130 .4219 ¹ / ₂ - 13 .4375 .4531 ¹ / ₂ - 20	
64 .0781 .0785 46 .0810 45 .0820	3 - 48 3 - 56	64 64 5 4	.2031 .2040 .2055 .2090		$\frac{32}{31}$ 64 <u>1</u> 33 2	.4688 .4844 ⁹ /16 - 12 .5000	
44 .0860 43 .0890 <u>3</u> 42 .0935 32 41 .0938	4 - 40 4 - 48	$ \frac{7 3}{32} 2 1 1 1 $.2130 .2188 .2210 .2280	1/4 - 28	64 17 32 35	.5156 ⁹ /16 - 18 .5312 ⁵ /8 - 11	
40 .0980 39 .0995 38 .1015	5 - 40	15 A 64 B C	.2340 .2344 .2380 .2420		64 9 37 16 64	.5469 .5625 .5781 ⁵ /8 - 18	
The L.S. S	Starrett C	Company	— Wo	orld's Gre	eatest To	olmakers	

Storrett[®] Decimal Equivalents

INCH/METRIC TAP DRILL SIZES & DECIMAL EQUIVALENTS

DRILL SIZE	DECIMAL	TAP SIZE	METRIC TAP	TAP DRILL SIZE	S DECIMAL (Inch)
$ \begin{array}{r} 19 \\ 39 \\ 32 \\ 64 \\ 5 \\ 41 \\ 8 \\ 64 \\ 21 \\ \end{array} $.5938 .6094 .6250 .6406 .6562	^{3/4} - 10	M1.6 x 0.35 M1.8 x 0.35 M2 x 0.4 M2.2 x 0.45	1.25 1.45 1.60 1.75	.0492 .0571 .0630 .0689
$\begin{array}{r} 43 & 32 \\ 64 & 11 \\ 45 & 16 \\ 64 & 23 \\ 47 & 32 \end{array}$.6719 .6875 .7031 .7188	³ /4 - 16	M2.5 x 0.45 M3 x 0.5 M3.5 x 0.6 M4 x 0.7	2.05 2.50 2.90 3.30	.0807 .0984 .1142 .1299
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.7344 .7500 .7656 .7812 .7969	⁷ /8 - 9	M4.5 x 0.75 M5 x 0.8 M6 x 1 M7 x 1	3.70 4.20 5.00 6.00	.1457 .1654 .1968 .2362
64 <u>13</u> 53 <u>16</u> 64 <u>27</u> <u>55 32</u> 64 7	.8125 .8281 .8438 .8594	7/8 - 14	M8 x 1.25 M8 x 1 M10 x 1.5 M10 x 1.25	6.70 7.00 8.50 8.70	.2638 .2756 .3346 .3425
57 8 64 29 59 32 64 15 61 16	.8750 .8906 .9062 .9219 .9375	1 - 8 1 - 12 1 - 14	M12 x 1.75 M12 x 1.25 M14 x 2 M14 x 1.5	10.20 10.80 12.00 12.50	.4016 .4252 .4724 .4921
$ \begin{array}{c} 64 \\ 63 \\ 64 \\ 1 \\ 1^{3/64} \end{array} $.9531 .9688 .9844 1.0000 1.0469	1 ¹ /8 - 7 11/8 - 12	M16 x 2 M16 x 1.5 M18 x 2.5 M18 x 1.5	14.00 14.50 15.50 16.50	.5512 .5709 .6102 .6496
$ \begin{array}{c} 17/64 \\ 111/64 \\ 17/32 \\ 11/4$	1.1094 1.1250 1.1719 1.2188 1.2500	1 ¹ / ₄ - 7 1 ¹ / ₄ - 12 1 ³ / ₈ - 6	M20 x 2.5 M20 x 1.5 M22 x 2.5 M22 x 1.5	17.50 18.50 19.50 20.50	.6890 .7283 .7677 .8071
$ \begin{array}{r} 1^{19/64} \\ 1^{11/32} \\ 1^{27/64} \\ 1^{11/32} $	1.2969 1.3438 1.3750 1.4219	1 ³ /8 - 12 1 ¹ /2 - 6 1 ¹ /2 - 12	M24 x 3 M24 x 2 M27 x 3 M27 x 2	21.00 22.00 24.00 25.00	.8268 .8661 .9449 .9843
PIPE THRE THREAD DRI 1/8 - 27 11 1/4 - 18 7/	AD SIZES (NI ILL THRE/ /32 11/2 - 1 16 2 - 1	PSC) AD DRILL 11/2 13/4 11/2 27/32	M30 x 3.5 M30 x 2 M33 x 3.5 M33 x 2	26.50 28.00 29.50 31.00	1.0433 1.1024 1.1614 1.2205
$\begin{array}{c c} 3/8 - 18 & 37 \\ 1/2 - 14 & 23 \\ 3/4 - 14 & 59 \\ 1 - 11^{1/2} & 15^{1/2} \\ 1^{1/4} - 11^{1/2} & 1^{1/2} \end{array}$	/64 2 ¹ /2 - 8 /32 3 - 8 /64 3 ¹ /2 - 8 32 4 - 8 2	2 ²¹ /32 3 ¹ /4 3 ³ /4 4 ¹ /4	M36 x 4 M36 x 3 M39 x 4 M39 x 3	32.00 33.00 35.00 36.00	1.2598 1.2992 1.3780 1.4173
Bulletin 1317-150M/S	06/09			st	arrett.com

METRIC

	DECIMALS TO MILLIMETERS			FRACT	IONS T	O DECIN	IALS TO) MILLI	METERS	
	DECIMAL	мм	DECIMAL	мм	FRACTION	DECIMAL	ММ	FRACTION	DECIMAL	мм
	.001	0.03	.470	11.94	1/64	.0156	0.40	33/64	.5156	13.10
	.002	0.05	.480	12.19	1/32	.0313	0.79	17/32	.5313	13.49
	.004	0.10	500	12.45	3/64	.0469	1.19	35/64	.5469	13.89
	.005	0.13	.510	12.95	4/40		4 50	0/40		
	.006	0.15	.520	13.21	1/16	.0625	1.59	9/16	.5625	14.29
	.008	0.20	.530	13.46	5/64	.0781	1.98	37/64	.5781	14.68
	.009	0.23	.550	13.97	3/32	.0938	2.38	19/32	.5938	15.08
	.020	0.25	.560	14.22	7/64	.1094	2.78	39/64	.6094	15.48
	.030	0.76	.580	14.73	1/0	1050	2.40	E /0	0050	15.00
	.040	1.02	.590	14.99	1/8	.1250	0.10	5/6	.6250	15.66
	.060	1.52	.600	15.24	9/64	.1406	3.57	41/64	.6406	16.27
	.070	1.78	.620	15.75	5/32	.1563	3.97	21/32	.6563	16.67
	.000	2.29	.630	16.00	11/64	.1719	4.37	43/64	.6719	17.07
	.100	2.54	.640	16.26	0/40	4075	4 70	44/40	0075	47.40
	.110	2.79	.660	16.76	3/16	.18/5	4./6	11/16	.68/5	17.46
	.120	3.00	.670	17.02	13/64	.2031	5.16	45/64	.7031	17.86
	.140	3.56	.690	17.53	7/32	.2188	5.56	23/32	.7188	18.26
	.150	3.81	.700	17.78	15/64	.2344	5.95	47/64	.7344	18.65
	.170	4.32	.710	18.03						
	.180	4.57	./20	18.29	1/4	.2500	6.35	3/4	./500	19.05
	.190	4.03	.740	18.80	17/64	.2656	6.75	49/64	.7656	19.45
	.210	5.33	.750	19.05	9/32	.2813	7.14	25/32	.7813	19.84
	.220	5.59	.770	19.56	19/64	.2969	7.54	51/64	.7969	20.24
	.230	5.84 6.10	.780	19.81						
	250	6.35	.790	20.07	5/16	.3125	7.94	13/16	.8125	20.64
	.260	6.60	.800	20.32	21/64	.3281	8.33	53/64	.8281	21.03
	280	7.11	.820	20.83	11/32	.3438	8.78	27/32	.8438	21.43
	.290	7.37	.830	21.08	23/64	.3594	9.13	55/64	.8594	21.83
	.300	7.62	.850	21.59				- 10		
	.320	8.13	.860	21.84	3/8	.3750	9.53	//8	.8750	22.23
	.330	8.38	.880	22.35	25/64	.3906	9.92	57/64	.8906	22.62
	.340	8.89	.890	22.61	13/32	.4062	10.32	29/32	.9063	23.02
	.360	9.14	.900	22.86	27/64	.4219	10.72	59/64	.9219	23.42
	.370	9.40	.910	23.11						
	.390	9.9ĭ	.930	23.62	7/16	.4375	11.11	15/16	.9375	23.81
	.400	10.16	.940	23.88	29/64	.4531	11.51	61/64	.9531	24.21
	.410	10.41	.960	24.38	15/32	.4688	11.91	31/32	.9688	24.61
	.430	10.92	.970	24.64	31/64	.4844	12.30	63/64	.9844	25.00
	.440	11.18	.980	25.15	4/0	5000	40 70		4 0000	
	:460	11.68	1.00	25.40	1/2	.5000	12.70	1	1.0000	25.40
_	Bulletin 1	318 5	50M/S 06/0)9					starr	ett.com

METRIC

MILLIMETERS TO DECIMALS MM DECIMAL MM DECIMAL DECIMAL MM DECIMAL DECIMAL MM MM .0004 0.41 2.4016 0.01 .0161 0.81 .0319 21 .8268 61 0.02 .0008 0.42 .0165 .0323 22 .8661 2.4409 0.82 62 .9055 0.03 .0012 0.43 .0169 0.83 .0327 23 63 2.4803 0.04 .0016 0.44 .0173 0.84 .0331 24 .9449 64 2.5197 0.05 .0020 0.45 .0177 0.85 .0335 25 .9843 65 2.5591 0.06 .0024 0.46 .0181 0.86 .0339 26 1.0236 66 2.5984 0.07 .0028 0.47 .0185 0.87 .0343 27 1.0630 67 2.6378 0.08 .0032 0.48 .0189 0.88 .0347 28 1.1024 68 2.6772 .0035 0.09 0.49 .0193 0.89 .0350 29 1.1417 69 2.7165 0.10 .0039 0.50 .0197 0.90 .0354 30 1.1811 70 2.7559 .0043 .0201 .0358 0.11 0.51 0.91 31 1.2205 71 2.7953 0.12 .0047 .0205 .0362 1.2598 72 2.8346 0.52 0.92 32 0.13 1.2992 2.8740 .0051 0.53 .0209 0.93 .0366 33 73 0.14 .0055 0.54 .0213 0.94 .0370 34 1.3386 74 2.9134 0.15 .0059 0.55 .0217 0.95 .0374 35 1.3780 75 2.9528 0.16 .0063 0.56 .0221 0.96 .0378 36 1.4173 76 2.9921 0.17 .0067 0.57 .0224 0.97 .0382 37 1.4567 77 3.0315 0.18 .0071 0.58 .0228 0.98 .0386 1.4961 3.0709 38 78 0.19 .0075 0.59 .0232 0.99 .0390 1.5354 79 3.1102 39 0.20 .0079 .0236 .0394 1.5748 0.60 1.00 40 80 3.1496 .0083 .0240 .0394 1.6142 0.21 0.61 1 41 81 3.1890 0.22 .0087 .0244 .0787 1.6535 3.2283 0.62 2 42 82 0.23 3 .0091 0.63 .0248 .1181 43 1.6929 83 3.2677 3.3071 0.24 .0095 0.64 .0252 4 .1575 44 1.7323 84 0.25 .0098 0.65 .0256 5 .1969 45 1.7717 85 3.3465 0.26 6 .2362 46 3.3858 .0102 0.66 .0260 1.8110 86 0.27 7 .2756 47 .0106 0.67 .0264 1.8504 87 3.4252 0.68 0.28 .0110 .0268 8 .3150 48 1.8898 3.4646 88 89 0.29 .0114 0.69 .0272 9 .3543 49 1.9291 3.5039 .3937 3.5433 0.30 .0118 .0276 10 1.9685 90 0.70 50 0.31 .0122 0.71 .0280 11 .4331 51 2.0079 91 3.5827 0.32 .0126 0.72 .0284 12 .4724 52 2.0472 92 3.6220 0.33 .0130 0.73 .0287 13 .5118 53 2.0866 93 3.6614 0.34 .0134 0.74 .0291 14 .5512 54 2.1260 94 3.7008 0.35 .0138 0.75 .0295 15 .5906 55 2.1654 95 3.7402 0.36 .0142 0.76 .0299 16 .6299 56 2.2047 96 3.7795 0.37 .0146 0.77 .0303 17 .6693 57 2.2441 97 3.8189 0.38 .0150 0.78 .0307 18 .7087 58 2.2835 98 3.8583 0.39 .0154 0.79 .0311 19 .7480 59 2.3228 99 3.8976 0.40 .0158 0.80 .0315 20 .7874 60 2.3622 100 3.9370 The L.S. Starrett Company — World's Greatest Toolmakers

Pre-Measurement-Eval

_ Hr. ____Qtr/Sem.

Name: _____ Measurement Test

Date:

Name:

Worksheet 2 Pre-Measurement-Eval

_____ Hr. ____Qtr/Sem. Name: _____

Directions: Solve the equations below in the space provided. **SHOW YOUR WORK** (1 pt each)

- 1. 1/2" + 1"=
- 2. 1/2" + 3/4"=
- 3. 3/8" + 7/8"=
- 4. 5/16" + 7/16"=
- 5. 3/16" + 3/4"=
- 6. 1/2" + 11/16"=
- 7. 11 1/2" + 3 1/2"=
- 8. 53/8" + 87/8"=
- 9. 10 3/16 + 6 1/4"=
- 10. 7 3/8" + 5 9/16"=
- 11. 1"-1/2"=
- 12. 3/4"-1/2"=
- 13. 7/8"-3/8"=
- 14. 7/16"-5/16"=
- 15. 3/4"- 3/16"=
- 16. 3/4"-11/16"=
- 17. 11 1/2"- 3 1/2"=
- 18. 8 7/8" 5 3/8"
- 19. 10 3/16" 6 1/4"=
- 20. 7 3/8"-5 9/16"=

MEASURING WITH A RULE/TAPE MEASURE

Write down the measurements for the location at each letter.

1. A=	6. F=	11. K=
2. B=	7. G=	12. L=
3. C=	8. H=	13. M=
4. D=	9. I=	14. N=
5. E=	10. J=	15. O=

Measure lines 16 through 20 to the nearest 1/16th and record the results.

16	16=
17	17=
18	18=
19	19=
20	20=

Additional Extension Activity Formulas/Worksheets

Board Feet

A board foot is defined as the equivalent of a piece of wood measuring one foot wide, one foot long and one inch thick. In each of the sketches, the number of board feet is shown.

To calculate the board measure in any quantity or piece of lumber, use the formula

Board feet = $T \times W \times L$

in which T = thickness (expressed in inches), W = width (expressed in feet), and L = length (expressed in feet).

Example: To find the number of board feet in the piece of lumber

shown, use T = 1 inch*, W = $\frac{6}{12}$ foot, and L = 4 feet. Board feet = T x W x L = 1 x $\frac{6}{12}$ x 4 = 2 bd. ft.

*round to the next half unit higher

Notice thickness is always in inches and width and length are in feet.

Find the number of board feet in each of the following quantities:

- 1. 5 pieces of 1" x 6" x 18'
- 3. 62 pieces of 1" x 10" x 18'

4. 18 pieces of
$$\frac{1}{2}$$
 " x 4" x 16

2. 34 pieces of 2" x 4" x 16'

5. 8 boards, $1\frac{1}{2}$ " thick, 22" wide, 16' long 6. 25 pieces, $\frac{3}{4}$ " x 3" x 12'

Various forumlas used in "Shop".

<u>Circles</u>

Π = 3.141592654Radius = ½ Diameter
Circumference = π D
Area of a circle $A = πr^{2}$ Volume of a cylinder $V = πr^{2} x \text{ length}$

Diameter=width of a circle measured thru the center

Circumference = Distance around a circle

Diameter = C/π

Rectangles

A = L x W V= L x W x H

Triangles

A= ½ x B x H Pythagorean's Theorem

$$A^2 + B^2 = C^2$$

Trigonometry

Sine=Opposite/Hypotenuse

Cosine= Adjacent/Hypotenuse

Tangent=Opposite/Adjacent

Weight of Steels

Aluminum = 0.098 Lbs/in^3 (6000 series) Stainless Steel (300 series) = 0.283 Lbs/in^3 Carbon Steel= 0.283 Lbs/in^3

Conversion 1"= 25.4 mm

Angle	Sin	Cos	Tan	Angle	Sin	Cos	Tan
1	0.017	1.000	0.017	46	0.719	0.695	1.036
2	0.035	0.999	0.035	47	0.731	0.682	1.072
3	0.052	0.999	0.052	48	0.743	0.669	1.111
4	0.070	0.998	0.070	49	0.755	0.656	1.150
5	0.087	0.996	0.087	50	0.766	0.643	1.192
6	0.105	0.995	0.105	51	0.777	0.629	1.235
7	0.122	0.993	0.123	52	0.788	0.616	1.280
8	0.139	0.990	0.141	53	0.799	0.602	1.327
9	0.156	0.988	0.158	54	0.809	0.588	1.376
10	0.174	0.985	0.176	55	0.819	0.574	1.428
11	0.191	0.982	0.194	56	0.829	0.559	1.483
12	0.208	0.978	0.213	57	0.839	0.545	1.540
13	0.225	0.974	0.231	58	0.848	0.530	1.600
14	0.242	0.970	0.249	59	0.857	0.515	1.664
15	0.259	0.966	0.268	60	0.866	0.500	1.732
16	0.276	0.961	0.287	61	0.875	0.485	1.804
17	0.292	0.956	0.306	62	0.883	0.469	1.881
18	0.309	0.951	0.325	63	0.891	0.454	1.963
19	0.326	0.946	0.344	64	0.899	0.438	2.050
20	0.342	0.940	0.364	65	0.906	0.423	2.145
21	0.358	0.934	0.384	66	0.914	0.407	2.246
22	0.375	0.927	0.404	67	0.921	0.391	2.356
23	0.391	0.921	0.424	68	0.927	0.375	2.475
24	0.407	0.914	0.445	69	0.934	0.358	2.605
25	0.423	0.906	0.466	70	0.940	0.342	2.747
26	0.438	0.899	0.488	71	0.946	0.326	2.904
27	0.454	0.891	0.510	72	0.951	0.309	3.078
28	0.469	0.883	0.532	73	0.956	0.292	3.271
29	0.485	0.875	0.554	74	0.961	0.276	3.487
30	0.500	0.866	0.577	75	0.966	0.259	3.732
31	0.515	0.857	0.601	76	0.970	0.242	4.011
32	0.530	0.848	0.625	77	0.974	0.225	4.331
33	0.545	0.839	0.649	78	0.978	0.208	4.705
34	0.559	0.829	0.675	79	0.982	0.191	5.145
35	0.574	0.819	0.700	80	0.985	0.174	5.671
36	0.588	0.809	0.727	81	0.988	0.156	6.314
37	0.602	0.799	0.754	82	0.990	0.139	7.115
38	0.616	0.788	0.781	83	0.993	0.122	8.144
39	0.629	0.777	0.810	84	0.995	0.105	9.514
40	0.643	0.766	0.839	85	0.996	0.087	11.430
41	0.650	0.755	0.869	00 07	0.998	0.070	14.301
42	0.009	0.721	0.900	0/ 00	0.999	0.052	19.001
40	0.002	0.731	0.933	00 80	1,000	0.035	20.030 57.200
44	0.095	0.719	1 000	90	1.000	0.000	51.290
40	0.707	0.707	1.000	90	1.000	0.000	

Sine= O/H Cosine= A/H Tangent= O/A

Num- ber of Divi- sions	Multi- plier						
2	86603	28	11107	53	05024	77	.04070
4	.70711	20	.10812	54	.05815	78	.04027
5	.58770	30	.10453	55	.05700	79	.03976
6	.50000	31	.10117	56	.05607	80	.03926
7	.43388	32	.00802	57	.05500	81	.03878
8	.38268	33	.09506	58	.05414	82	.03830
9	.34202	34	.09227	59	.05322	83	.03784
10	.30902	35	.08964	60	.05234	84	.03739
11	.28173	36	.08716	61	.05148	85	.03695
12	.25882	37	.08480	62	.05065	86	.03652
13	.23932	38	.08258	63	.04985	87	.03610
14	.22252	39	.08047	64	.04907	88	.03569
15	.20791	40	.07846	65	.04831	89	.03529
16	.19509	41	.07655	66	.04758	90	.03490
17	.18375	42	.07473	67	.04687	91	.03452
18	.17365	43	.07300	68	.04618	92	.03414
19	.16460	44	.07134	69	.04552	93	.03377
20	.15643	45	.06976	70	.04487	94	.03342
21	.14904	46	.06824	71	.04423	95	.03306
22	.14232	47	.06679	72	.04362	96	.03272
23	.13617	48	.06540	73	.04302	97	.03238
24	.13053	49	.06407	74	.04244	98	.03205
25	.12533	50	.06279	75	.04188	- 99	.03173
26	.12054	51	.06156	76	.04133	100	.03141
27	.11609	52	.06038	1.90365	11.00	20.00	Line and

Multiplier x Diameter of Hole Circle= Chord Length

Example: If you were to lay out holes for a clock (12 holes or divisions) on a 12" circle with the holes set in $\frac{1}{2}$ ". We would have an 11" layout diameter. The multiplier for 12 divisions =0.25882 0.25882 x 11=2.847" between hole centers

	DECIMAL EQUIVALENTS OF AN INCH								
Fraction	Decimal	Fraction	Decimal	Fraction	Decimal	Fraction	Decimal		
1⁄64	0.015625	17/64	0.265625	33/64	0.515625	49/64	0.765625		
1/32	0.03125	^{9/} 32	0.28125	17/32	0.53125	25/ ₃₂	0.78125		
3⁄64	0.046875	19/64	0.296875	35/64	0.546875	51/64	0.796875		
¹ / ₁₆	0.0625	^{5/} 16	0.3125	^{9/} 16	0.5625	13/16	0.8125		
5/64	0.078125	21/64	0.328125	37/64	0.578125	53/ ₆₄	0.828125		
3/32	0.09375	11/32	0.34375	^{19/} 32	0.59375	27/32	0.84375		
7/64	0.109375	23/64	0.359375	³⁹ / ₆₄	0.609375	55/ ₆₄	0.859375		
1⁄8	0.125	3/8	0.375	5/8	0.625	7/8	0.875		
⁹ / ₆₄	0.140625	²⁵ / ₆₄	0.390625	41/64	0.640625	57/64	0.890625		
5/32	0.15625	¹³ /32	0.40625	21/32	0.65625	²⁹ / ₃₂	0.90625		
11/64	0.171875	27/64	0.421875	43/64	0.671875	59/64	0.921875		
^{3/} 16	0.1875	7⁄ ₁₆	0.4375	¹¹ / ₁₆	0.6875	^{15/} 16	0.9375		
13/64	0.203125	²⁹ /64	0.453125	45/64	0.703125	61/64	0.953125		
7/32	0.21875	15/32	0.46875	23/32	0.71875	31/32	0.96875		
15/64	0.234375	31/64	0.484375	47/64	0.734375	63/ ₆₄	0.984375		
1⁄4	0.250	1⁄2	0.500	3/4	0.750	1	1.000		

©1999 American Technical Publishers, Inc.

1. Find the area of the wood by multiplying width x length. Note: You should round all fractional numbers up to the next whole number Example:

W = 6" L = 12" Area = W x L Area = 6" x 12" Area = 72 square inches (sq. in.)

```
2. Convert that number into Board Feet (BF):
Formula:
BF = sq. in./144
BF = 72/144
BF = .5
```

3. Determine the cost of the piece of wood. Different species of wood have different costs. For this example, let's say we are using a wood that costs \$6.00 per board foot. Therefore the cost of this piece of wood would be:

Cost = price per BF x number of BF Cost = \$6.00 x .5 Cost = \$3.00

So in this example, the first piece of wood would cost \$3.00. You must repeat this step for each piece of wood, and add up the total to determine the cost of all the wood for your project.

Remember, for the projects that you are required to make in this class, the wood is provided for you, but if you make a mistake and ruin a piece of wood, you must pay for the piece to replace it!

Additional measuring reference material provided by Mr. Eric Strom. I give a copy of these worksheets to students that need additional review or remedial work. Something they can take with them and use as a study guide for measuring. Eric's work can be found on the Woodshop Teachers.org website: https://sites.google.com/a/woodshopteachers.org/www/lessonresources

Teacher:

Mr. Storm (503) 386-1167 ex 1161 eric_storm@revnolds.k12.or.us

Measuring

History:

When woodworking, we do not use the Metric system, but instead use the Standard, or English system of measurement, meaning we measure in feet and inches, not in centimeters.

In the Standard system of measurement, inches are broken down in to fractions. In this class, we will use rulers which have each inch broken into 16 sections. Each of these sections is 1/16 of an inch.

	իրիրին	ինիկիկինի	որություն	իսիսիդորի	أغليلها
1	2	3	4	5	6

On this ruler, notice that each inch is broken into 16 parts. Also notice that only the inches are numbered. The lines that divide each inch are different lengths, but they are not numbered. If every line were numbered, the ruler would have way too many numbers on it, and would just get confusing.

People often ask why inches are broken into 16 sections, and not 10 or 14 or 19 or anything else. An inch is broken into 16 sections because that is what we end up with if we keep taking half of something.

Before accurate ways to measure and weigh things existed, this was a simple way to divide things into equal portions quite accurately.

Example:

Let's say you had a bucket of rice to sell at a market. If someone came up to you and said, "I would like to purchase ¹/₁₀ of that rice, it would have been very difficult to measure out exactly that amount of rice without precise measuring devices.

But if you had a simple balancing scale, you could very accurately divide the rice in half. You could then divide each half in half, ending up with $\frac{1}{4}$ of a bucket. You could then easily divide each $\frac{1}{4}$ in half to get exactly $\frac{1}{8}$ of a bucket of rice. By doing this, you could assure the person who was buying your rice that they were getting precisely $\frac{1}{8}$ a bucket of rice.

Another way to explain this is to talk about how pizzas are cut up, as shown in the following example.

How we measure, and how we write measurements:

Here is a ruler which is 6" long.

-Each inch is divided into 16 parts

Here is an enlarged picture of the first inch on a ruler.

-Each 1/16" mark is labeled.

-All fractions are reduced.

If you count over from the beginning of the ruler 5 spaces, you will see that mark labeled as $\frac{3}{16}$ ". The next mark is not labeled as $\frac{6}{16}$ ", but is instead reduced down to $\frac{3}{8}$ ".

Use this page as a reference for the exercises on the following pages.

Exploring Woodworking and Construction Technology Course Syllabus Tal sensor 2009 Room T-3 eacher Mr. Storr, 300 306-1167 ex 1161 er, stormfrygmidsk1/12 cas

Notice how the 5 different measurements shown on this ruler are written:

-The first one, 5/8", is 10 spaces over from the beginning of the ruler. It could be written as 10/16", but we reduce that fraction to 5/8".

-The next one, 1 $\frac{1}{2}$ ", is 8 spaces past the 1" mark. It could be written as 1 $\frac{8}{16}$ ", but we reduce it to 1 $\frac{1}{2}$ ".

All of these measurements are written in the correct way. Use this page as a reference for the following worksheets.

Exercise 1

Correctly write the measurements for the following 9 locations.

Exploring Woodworking and Construction Technolog Course Syllabus Fail semesier 2009 Room T-3

Teacher: Mr. Storm (503) 386-1167 ex 1161 eric_storm@reynolds.k12.or.us

Exercise 2

On this ruler, make and label an arrow for each of the following measurements.

$$3_{8}^{"}$$
 $3_{4}^{"}$ $1^{1}_{8}^{"}$ $1^{9}_{16}^{"}$ $2^{5}_{8}^{"}$
 $3^{3}_{4}^{"}$ $4^{1}_{16}^{"}$ $4^{13}_{16}^{"}$ $5^{5}_{16}^{"}$ $6^{"}$

Exercise 3

On this ruler, make and label an arrow for each of the following measurements.

⁵ / ₈ "	7/s=	$1^{-1}/_{4}^{-n}$	$1^{11}/_{16}$ "	2 7/8"
3 13/16"	4 7/16"	4 ¹⁵ / ₁₆ *	5 ¹ / ₂ "	5 ³/ ₄ "

Teacher: Mr. Storm (503) 386-1167 ex 1161 eric_storm@reynolds.k12.or.us