

# Understanding Tolerance Interval Lesson Plan

Name: Michele Longsine

District: Oconto Falls School District, Oconto

Falls, WI

2017

#### Overview:

Students will be able to determine tolerance intervals and whether dimensions fall within those limits.

# **Featured Externship Business:**

KS Kolbenschmidt

## Subject:

Mathematics

## **Grade Level(s):**

7<sup>th</sup> and 8<sup>th</sup>

# **Learning objectives:**

After doing this activity, students should be able to:

• determine a tolerance interval and if given measurements, determine if they fall within the stated acceptable tolerance range.

# **Workplace Readiness Skill:**

X Social Skills X Communication X Teamwork X Critical Thinking

X Attitude and Initiative X Planning and Organization

X Professionalism 

Media Etiquette

# Type of Activity:

X Individual

X Small Group

X Whole class

# **Model Academic Standards for School Counseling:**

## **Academic Development Domain:**

Content Standard C: Students will understand the relationship of academics to the world of work, and to life at home and in the community.

Core Performance Standard 1: Understand how to relate school to life experiences.

## **Career Development Domain:**

Content Standard H: Students will understand the relationship between educational achievement and career development.

Core Performance Standard 2: Participate in ongoing, lifelong learning experiences to adapt to and excel in a diverse and changing economy.

## **Common Core State Mathematics Standards:**

**B.8.2** Perform and explain operations on rational numbers

**7.NS.1** Apply and extend previous understandings of addition and subtraction to add and subtract Rational numbers

#### Time:

**20-30 MINUTES** 

#### **Materials:**

- SmartNotebook
- Notes on Tolerance Intervals (attached)
- Paper
- Writing Utensil

#### Directions:

- 1. Introduce the idea of tolerance intervals using the SmartNotebook notes (attached). Make sure students understand what the  $\pm$  symbol means.
- 2. Work with students to determine the permissible limits of variation in the four example problems (Slide 2).
- 3. Have students complete the group activity from the notes (Slide 3).
- 4. Have students check each other's work through the extension activity (Slide 4).

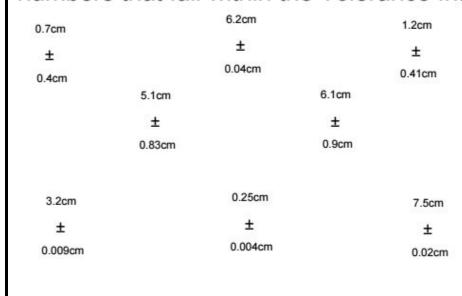
# Wrap-up:

Have students answer the questions on Slide 5.

1

When machining parts, certain specifications must be met. The acceptable range of measurements is called the **TOLERANCE**.




Tolerance is the permissible limits of variation. The range is given using the symbol ±.

2

Example: Find permissible limits of variation...Tolerance Interval for each problem

- A.  $7 \text{ cm} \pm 0.5 \text{ cm}$
- B.  $4 \text{ mm} \pm 0.02 \text{ mm}$
- C.  $0.04 \text{ mm} \pm .003 \text{ mm}$
- D.  $0.3 \text{ cm} \pm 0.01 \text{ cm}$

Activity: Send someone from your table to pop a balloon. Everyone at your table needs to write down the Tolerance Interval for your problem. Each student needs to generate a list of 5 numbers that fall within the Tolerance Interval.



4

Activity Extension: Exchange your paper with someone from a different table. Check their work.

- Did they write the tolerance interval correctly?
- 2. Did they make a list of 5 numbers that fall within that interval?
- 3. Did they label their answers?

If you find any errors, respectfully discuss them with the other student. Together, make all corrections in a different color.

Wrap UP: On the back of your paper, write a complete sentence to answer each question.

- 1. What is a tolerance interval?
- 2. How it is determined?
- 3. What does the symbol ± mean?
- 4. Why might companies be concerned about checking tolerance intervals?

